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SUMMARY 
A finite difference study of the unsteady two-dimensional flow past a circular cylinder has been conducted 
using vorticity and streamfunction as the dependent variables. The two cases considered were impulsively 
started and decelerated flows. The impulsively started problem was considered to validate the method and 
has yielded results which agree quite closely with existing results from both calculations and experiments. 
The decelerated flow analysis produced results which can be explained in terms of induced velocity effects 
from existing wake vortices for both suddenly stopped and uniformly decelerated flows. 
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INTRODUCTION 

The impulsively started flow of a viscous incompressible fluid past a stationary circular cylinder 
has been the subject of a number of numerical studies. For the purposes of this study we will 
define an impulsive start in the mathematical sense as opposed to  the physical sense. Previous 
investigations have typically taken two different approaches to the cylinder problem. The first is a 
purely viscous flow numerical solution while the second is either a direct numerical simulation or 
a turbulence model solution or a combination of both. 

Most of the viscous flow studies have dealt with the short-time or low-Reynolds-number ( R e )  
cases, the implication being that the wake remains symmetric and that no turbulence is present in 
the flow field. The symmetric wake case has been studied in References 1-8. There have been 
several computational studies in which the wake was allowed to become asymmetric with the 
attendant alternate and periodic shedding of vortices. For a purely viscous flow, these asymmetric 
wake studies are also limited in both time and Reynolds number, but the upper bounds on each 
for physical reality are larger than for the symmetric wake case. The asymmetric wake case, with 
vortex shedding, has been studied in References 2, 3, 5 and 9-12. 

Calculations for flows in which turbulence is present have been fewer and more recent than the 
purely viscous flow solutions. Tamura et a1.,13 Tsuboi et a1.14 and Braza and Ha Minh15 have 
been the most visible among several in calculating high-Reynolds-number flows by means of a 
direct numerical simulation of the two-dimensional Navier-Stokes equations. Tamura et al. 
calculated drag coefficients of about 1.7 at Re= 3000 and about 1.8 at Re= 1OOOO. Both of these 
values are about 50% higher than the experimentally determined values for flow past a rigid 
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circular cylinder. In a continuing study by the same authors, Tsuboi et al. calculated drag 
coefficients of about 1.7 at Re = 10' and about 0 8  at Re = 6 x 10'. These values are also about 
50% high. Braza and Ha Minh calculated drag coefficients and Strouhal numbers which agree 
very well with data at both Re = 3000 and 10 000. Turbulence models have recently been used by 
Holmes and ConnellI6 and Song and Wang.I7 Holmes and Connell used the k--E model and an 
adaptive grid scheme to calculate the flow past a cylinder at Re = 40 and 4000. They calculated a 
Strouhal number of 0.17, which compares well with the experimental value of 0.18 at Re=4000. 
However, they computed no other parameters which could be compared to experimental values. 
Song and Wang used an eddy viscosity model to calculate a cylinder flow at a Reynolds number 
of 1.4 x 10'. The drag coefficient calculated by Song and Wang was about 25% too high while the 
lift coefficient was about 40% too high. Even though each of these high-Re studies involved the 
calculation of other parameters, it is sufficient to cite only drag and lift coefficient values to see 
that high-Re flows are not fully understood computationally. 

These direct numerical simulations and turbulence models offer considerable hope for cylinder 
flow calculations at Reynolds numbers for which turbulence is present, but, except for the results 
of Braza and Ha Minh, there still appears to be room for progress in obtaining more accurate 
solutions. However, it is not the intention of this study to report the computation of flows when 
turbulence is present. Our approach will deal only with purely viscous flows. 

An aspect of unsteady flow about a circular cylinder which apparently has escaped attention in 
numerical studies is a decelerated flow. In this study we examine situations consisting of a 
suddenly stopped flow and a uniformly decelerating flow. In the suddenly stopped flow case, 
which could be represented by the sudden closing of a butterfly valve, the cylinder is exposed to a 
rapidly decelerating fluid. Forces at least comparable to those in an impulsively started flow could 
be expected to act on the cylinder. The calculation of the flow field, especially the interactions of 
the wake with the cylinder, would yield an understanding of the reaction of the cylinder to the 
changing flow field. 

In this paper we report the results of a series of numerical calculations for both impulsively 
started and decelerated flows. The impulsively started flow is used only to validate the procedure. 
The decelerated flow results are original to this effort. The wake is allowed to become asymmetric 
but there remains an elapsed time constraint because of the co-ordinate transformation employed 
in the numerical solution. When the shed vortices travel far enough downstream, the mesh size 
becomes too large for an accurate solution to be calculated. We do not allow the calculation to 
continue to times large enough for the vortices to be influenced by either the far-field mesh size or 
the downstream boundary. 

ANALYSIS 

We represent the impulsively started or decelerated flow of a viscous incompressible fluid past a 
stationary circular cylinder as a two-dimensional flow with dominant viscous stresses. There are 
obvious Reynolds number limitations to these assumptions; these will be addressed as the results 
are presented. The governing equations are the vorticity transport equation, 

and the equation relating the vorticity to the streamfunction, 

v2+ = 0, 



VISCOUS FLOW PAST A CIRCULAR CYLINDER 385 

where 

In equations (1) and (2), w is the two-dimensional vorticity, JI is the two-dimensional 
streamfunction with r, 8 as the polar co-ordinates, t is time and v is the kinematic viscosity. The 
fluid velocities are found from 

The boundary conditions on the cylinder surface are 

I) =aI)/ar = 0 on r = R.  (4) 

The &variation of the dependent variables is taken to be periodic, with the values at 8 = 0 and 2n 
being the same. 

The downstream boundary condition for the impulsively started cylinder is that the flow 
remains uniform at r = a. The actual downstream distance at which the infinity condition is 
applied depends on the Reynolds number, the elapsed time in the calculation and the parameter a 
in the co-ordinate transformation to be applied. (The parameter a will be defined in equation (5) . )  
For example, when either the Reynolds number or the elapsed time is small, resulting in a 
symmetric wake, the infinity condition can be taken closer to the cylinder than for the case when 
vortex shedding occurs. 

Since the major velocity gradients in the flow appear near the cylinder surface, it is necessary to 
find a co-ordinate transformation which will concentrate the mesh spacing near the surface. This 
is accomplished by setting 

r = Re"' and 8 = q .  (5 )  

where a is the transformation parameter, which is set equal to n for this study, and ( and are the 
transformed variables. Figure I 1 shows the system which would lead to A(  = Au. We now define 
z = U , t / R ,  Re = 2U,R/v ,  JI = JI/U,R, 6 = w R / U , ,  tZ = u / U ,  and v" = v /U , .  Equations (1) 
and (2) become 

and 

with 

a2 az 
a <  au 

V2 = 7+z and g ( ( )  = a2e2*e. 

The velocities are given by 
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Figure 1 .  Coordinate system leading to A( = Aq 

The boundary conditions are now given by 

J = a J / a t = o  on t = o  (9) 

3 = 2 sinh(at,) sin(aq) and (3 = 0 at 5 = 5,. (10) 

and 

This now completes the system of governing equations and boundary conditions. Hereafter we 
will omit the tilde above the dimensionless variables and understand that we are working with 
dimensionless quantities. 

NUMERICAL SOLUTION 

Equation (6) will be solved by a predictorsorrector finite difference scheme while equation (7) 
will be solved by an IMSL subroutine, a fast Poisson solver, based on a method known as the 
HODIE (high-order difference approximation with identity expansion) method as developed by 
Lynch and Rice. * This procedure generates fast approximate solutions, using fast Fourier 
transforms and correct to sixth order, and is well suited to equations like equation (7). The co- 
ordinate system selected to represent the problem provides for the use of the fast Poisson solver. 
There are variations of this co-ordinate transformation which have been used for the symmetric 
wake and for the asymmetric wake problem.2.3. ' ' 9  l 2  

In finite difference form, equation (6) becomes 

where the subscript i, j represents the mesh point i, j in the co-ordinates q, t respectively and the 
truncation error is O ( A t 2 ,  Aq2). We set 

U. 1. I . =  - ( t j i + l , j - t j i - l , j ) / 2 A q  and K , j = ( t j i , j + l - t j i , j - l ) / 2 A t .  (12) 
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Equation (1 1) is now written as 

a m ,  j / a z  = .i7 j ,  (13) 
where the right-hand side of equation (11) is divided by g(tj)  and becomesfi',j. 

based on the second-order Adams-Bashforth method, 
A two-step, three-level, finite difference, predictor-corrector scheme is used with the predictor 

w z j = w :, j + (A 212) (3 fl, j -fl,j ), (14) 
where n indicates the nth time step and the asterisk refers to the predicted value of w (orf, U ,  V )  at 
the (n+ 1) time step. The corrector equation is 

(jl:,y = w:, j + ( A  Z/ 12) ( 5 f t  j + 8 f y ,  j -f:,j I). ( 1'5) 
Note that the calculation off* involves not only W* but also U* and V*. The corrector gives a 
third-order-accurate value for my,: '. Since equations (14) and (15) require information at the 
( n -  1) time step, the forward Euler method is used to calculate the first time step, 

w ? .  1.1 = W !  .J  . + A T  f:,j. 

W :  = w:, + (fit +f:, j )A~/2.  

(14) 

(17) 

The corrector is given by 

These two equations provide for second-order accuracy in time for the first time step. 
The initial conditions for the impulsive start problem are 

u = w = $ = O  at t = O  (18) 

(19) 
and 

U = 1 at t = A t  in the undisturbed flow. 

The solution procedure consists of the following steps. 

1. 

2. 

3. 
4. 

5. 
6. 

7. 

A 

The initial $-solution is the inviscid solution, i.e., the solution of the homogeneous form of 
equation (7). 
Calculate a zero-time-step value of wall vorticity from 

in which 
extrapolation of the vorticity to the cylinder wall. 
Solve equations (16) and (17) to obtain the vorticity after the first time step. 
Solve equation (7) for $ using the vorticity field calculated in step 3. Determine a new wall 
vorticity from the equation in step 2 with mi, not now necessarily equal to zero. 
Solve equations (14) and (15) for the vorticity at the next time step. 
Solve equation (7) for $ using the vorticity field calculated in step 5. Determine a new wall 
vorticity from the equation in step 2 with 
Repeat steps 5 and 6. 

von Neumann linear stability analysis was performed for equations (1 1)-(15). The vorticity 

= 0 before the first time step. This equation is a second-order-correct 

not now necessarily equal to zero. 

myj was expanded in a Fourier series as 

w : ~  = 1 1 exp(2nkItj) exp(2nl!vi) 
k I  
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Figure 2. Stability of the present numerical scheme in terms of 1 

and substituted into equation (1 1). The stability of the scheme requires that the Fourier modes do 
not increase with time, i.e., IAE: ' 1  < IAErl. This yields 

(21) I( 1 +gAkl 

isin(2nkAc) isin(2nlAq) - F j  A t  Aq 

k J [(l + E A k l  +inti) -(;nil + f n k l ) l  I < 2, 
where 

(22) 
1 - uij 

and = J( - 1). 
Figure 2 shows the stable region of this flow; &I must be chosen so that its value is from the 

region labelled 'stable'. Equations (21) and (22) can be simplified by letting A(  = Aq. This 
substitution gives 

A = u i j  2nkA? A t v i j  2n1A? A = -i[ - sin (--> + 
A? ar j  sin (-)I arj 

2nkAF 2nlAF - [ 2-c0s ( 7 ) - ' O s  ( T) ] ' 
where 1 is the same as in equation (22) except that has had the subscripts omitted, a = n and 
r" is defined by ? = r / R .  The mesh size and time steps used herein provide for a conditionally 
stable solution. 

RESULTS FOR IMPULSIVELY STARTED AND DECELERATED FLOWS 

Impulsive start 

The calculation procedure was verified for the impulsively started flow past a circular cylinder. 
Calculations have been performed for both symmetric and asymmetric wakes for several 
Reynolds numbers and comparison has been made with both flow visualization results and other 
calculations to demonstrate the correctness of the results. 

Four different mesh sizes were examined to determine the appropriate mesh size for a 
physically correct solution at Re = 550. The mesh sizes used were A t  = A q  = 1/32, 1/50, 1/64 
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and 1/100. The solutions at 1/64 and 1/100 were the same and, as our discussion will show, 
yielded remarkably good comparison with flow visualization and other computational results. 
The results from calculations for 1/50 and 1/32 showed increasingly distinct differences from the 
1/64 results. Three different time steps (002, 0.01 and 0.005) were used; the results were 
indistinguishable for a mesh spacing of 1/64. Thus the results presented herein are exclusively for 
a constant mesh spacing of A( = Aq = 1/64 and a time step of AT = 002. These values are 
compatible with equation (23). 

For an impulsively started flow at ReG40, the physical wake is expected to remain symmetric 
for large times even if the flow is perturbed. For values of Re > 40 the physical wake will remain 
symmetric through some dimensionless time which depends on the value of Re and then will 
become asymmetric with vortex shedding occurring. 

Calculations have been performed at several Reynolds numbers at which other numerical 
solutions and flow visualization results exist. Ta Phuoc LOC' presented results of calculations at 
Re = 300,550 and 1O00, Chamberlaid presented results at Re = 550 and Braza et aL9 at 
Re = 1O00, all at times small enough for the physical wake to remain symmetric. The calculated 
results from the present study agree remarkably well with the cited results; the comparison 
includes both the streamfunction values and the wall vorticity distribution which is shown in 
Figure 3 at Re = 550. The wall vorticity shows clearly the features of the separated region, 
including the large and secondary wake vortices. Bouard and Cou tan~eau '~  also show flow 
visualization results at Re = 300 and 550. All of the calculated results previously mentioned and 
the present results show very good agreement with the flow visualization results of Bouard and 
Coutanceau. These comparisons are not shown here. 

The numerical solutions produce symmetric wakes either at Reynolds numbers or elapsed 
times greater than those for which vortex shedding is expected to occur. Therefore it is necessary 
to perturb the flow calculation, 0 < T G 5, to stimulate wake asymmetry and vortex shedding. 
This perturbation consisted of increasing the dimensionless $-value on the cylinder surface by 
0.005. For 5 > 5 the perturbation was removed and the numerical solution progressed according 
to the procedure described in the analysis section. The results of a perturbed solution are shown 
in Figure 4 at Re = 102 and T = 40, with A t  = Aq = 1/64 and A z  = 0.02. The streamfunction 
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Figure 3. Wall vorticity for Re = 550, 7 = 50 at A <  = Aq = 1/64, A T  = 0.02 
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Figure 4. (a) ((I plot, (b) streaklines, (c) o plot, Re= 102, s=40, A t = A v =  1/64, Ar=002 

plot looks similar to the streamfunction plots of many other investigators of this problem. The 
results have the same streamfunction behaviour in the wake as observed by Dougherty et a l l 2  
and Fang.' ' However, comparison between flow visualization pictures and streamfunction 
calculations cannot be made directly since flow visualization patterns result from streaklines, not 
streamlines. Thus, to have more confidence in our results, we calculated the streaklines which 
would correspond to the calculated streamfunction distribution. The streakline calculation was 
done by following fluid elements which passed through a vertical array of points just upstream 
from the stagnation point. The array of points was arranged with five points just above and five 
points just below the dividing streamline. The streakline calculation was a first-order Lagrangian 
process and these results are also shown in Figure 4. The streakline calculation produces a flow 
field remarkably like that of Taneda as depicted in van Dyke's book2' at a Reynolds number 
of 105. 

The drag and lift coefficients for this example at Re = 102 are shown in Figure 5. The 
asymptotic value of C, for large time agrees quite well with the experimental value. The lift 
coefficient was found to oscillate at the correct frequency (the Strouhal frequency) and the drag 
coefficient exhibits the expected small-amplitude oscillations at twice the Strouhal frequency. 
Calculations were also made at Re-values of 140 and 200 and showed equally good comparison 
with experimental results. These results are shown in Figure 6. 

Decelerated flow 

The decelerated flow calculations are done for four different situations. In the first two cases the 
mathematical simplification of an instantly stopped flow is applied. The first situation to be 
presented is for the initial condition (short-time solution for the impulsive start) of a symmetric 
wake while the second situation has an unsymmetric wake (long-time solution for the impulsive 
start) for the initial condition, both for a suddenly stopped flow. In the last two cases a uniform 
deceleration of the flow is applied. The third of the four situations examines the flow when the 
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Figure 5. Drag and lift coefficients for Figure 4 example 

deceleration occurs when the original wake is symmetric. The fourth is when the deceleration 
occurs for an original wake which is unsymmetric. In all cases the velocity in the drag coefficient 
definition is the initial velocity before deceleration begins. 

The case of Re = 550 with a symmetric wake was also studied by Ta Phuoc LOC' and 
Chamberlain6 and the wall vorticity comparison is shown in Figure 3 as mentioned earlier. The 
agreement is excellent; the wake vortices are clearly shown. The impulsive start solution at z = 5 
represents the initial condition for the sudden stop calculation. The drag coefficient at the first 
time step for the impulsive start was approximately 37, while the value for the sudden stop first 
time step was approximately 55, an increase of almost 50%. We recognize that the actual value of 
the drag coefficient is not meaningful at  each of these first time steps;.the values are mentioned to 
show the relative difference between them. The behaviour for both cases after several time steps is 
shown in Figure 7. The direction of the force acting on the cylinder is observed to reverse twice as 
time increases. The force reversal is explained by the wake vortex motion which is produced by 
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the velocity each vortex induces on the other. The solution is shown in Figure 8 at t = 7. The 
instant the flow is stopped, a strong inertial force is generated in the opposite direction to the drag 
force developed by the impulsive start flow. This inertial force decreases rapidly and, over less 
than one dimensionless time unit, is again in the direction of the original drag force. The force 
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Figure 7. Drag coefficient for impulsive start and sudden stop case at Re = 550 

continues to increase as the vortices move towards the cylinder. The force increase is diminished 
as a new pair of vortices is formed at the cylinder shoulders. The force then asymptotically 
approaches zero as the vortices diffuse and the effects of the sudden stop vanish. All of this is seen 
clearly in Figure 8. 

The second case for the suddenly stopped flow is with an initial condition given by the 
impulsive start solution shown in Figure 4 at Re = 102 and z = 40. For this case, because of 
vortex shedding, there will be a time-dependent lift variation as well as drag. This is shown in 
Figure 9. Again we note the sharp change in magnitude and direction of the drag force as the flow 
is suddenly stopped. Although it is not as evident as for the symmetric wake case owing to the 
ordinate scale in Figure 9, the drag experiences the same behaviour as for the example depicted in 



394 X. WANG AND C. DALTON 

(b) 

Figure 8. (a) +b plot, (b) o plot; for Re = 550, T = 7 

Figure 7. The lift coefficient reverses sign twice as the asymmetric near wake passes over the 
cylinder. The streaklines are shown in Figure 10 at z = 55; the solution is actually carried out to 
z = 80 but is not shown herein. The far-wake vortices do not have appreciable motion during this 
time interval and the lift appears to be converging towards zero. However, as the nearest-wake 
vortex approaches the cylinder, the lift will begin to be affected again. 

When the flow is uniformly decelerated from a constant velocity to zero, the forces do not 
change as dramatically as in the suddenly stopped flow. However, there are still many interesting 
flow phenomena present, which have been observed by means of flow visualization by Tatsuno 
and Taneda.’l Two cases have been calculated in the present study in order to make direct 
comparisons with the Tatsuno and Taneda flow visualization results, which did not include any 
force measurements. The flow is first impulsively started and the wake is allowed to become 
fully developed and then the flow starts to decelerate. In the first case the Reynolds number 
is Re = 36.5 and the dimensionless deceleration parameter is a‘D3/v3 = 139, where a’ is 
the deceleration of the flow. The computational parameters are the following: mesh sizes 
A(  = Aq = 1/64, mesh system 65 x 129, time step A T  = 0.01 and outside boundary <, = 1.0 
( I ,  = 23 R). The calculated wake development is shown in Figure 11 from z = 1000 to 27.25. 
From this figure we can see that as the incident flow decelerates, the influence of the 
wake vortices becomes increasingly stronger and the wake shape starts to grow and become 
bigger and bigger. The length of the wake is plotted in Figure 12 as a function of dimension- 
less time a’ t / U ,  as was originally used by Tatsuno and Taneda. Small deviations are observed 
between the calculated results and the experimental data as the flow decelerates. This deviation 
can be explained by the measurement of the wake length. Unlike the numerical simulation, zero 
streamlines which divide the separation bubbles from the main flow can hardly be identified 
from a flow visualization picture. Despite these small deviations, the comparison is still fairly 
good. 

The second case of the uniformly decelerating flow problem is solved for Re = 77 and 
a‘D3/v2 = 105, with mesh sizes A t  = Aq = 1/64, mesh system 81 x 129, time step A T  = 001 and 
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Figure 9. Drag and lift coefficients for the sudden-stop case at Re= 102, AC=Aq= 1/64, Ar=0.02 
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Figure 10. Streakline plot for the sudden-stop case for Re= 102 at t = 5 5  
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a) a't/U=O.O. 
b) a't/U= 0.1. 

c) a't/U=0.2. d) a't/U=0.3. 

e) a't/U= 0.4. 

g) a't/U= 0.6. 

1) a't/U= 0.5. 

h) a't/U= 0.7. 

i) a't/U= 0.8. 

Figure 11 .  Calculated wake change for a uniformly decelerating flow with a ' D 3 / v 2  = 139 and an initial Reynolds number 
of 36.5 
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Figure 12. Wake-length change for the conditions of Figure 1 1  

outside boundary 5 ,  = 1.25 ( r ,  = 51R). The flow calculation is perturbed to generate an 
asymmetric wake. Again the flow is impulsively started at 7 = 0 and the wake is allowed to 
develop to 7 = 40 and then flow deceleration starts. The flow patterns in the deceleration process 
are shown in Figure 13 from 7 = 40 to 165.94. The flow visualization by Tatsuno and Taneda,2' 
who did not publish any force measurements for this case either, are also shown in Figure 13(c) at 
7 = 140.78 and in Figure 13(d) at 7 = 165.94. The calculated results agree very well with the flow 
visualization results. The time variations of the drag and lift coefficients are shown in Figure 14. 
Since the deceleration of the flow is very slow, the incident flow dominates the motion of the wake 
vortices for a fairly long dimensionless time before the wake vortices start to move back and 
interact with the cylinder. During this time period, the strength of the wake vortices becomes 
weaker and weaker due to viscous diffusion. Thus, when they finally encounter the cylinder as 
they move back, no significant force change is observed. However, the lift force changes its sign as 
the wake vortices with different circulations move back and interact with the cylinder. The 
sudden change in drag coefficient which occurs at 7 = 152.10 is because of the discontinuity in the 
deceleration at this time. 

CONCLUSIONS 

The finite difference calculations undertaken herein have been tested for the benchmark case of an 
impulsively started viscous flow. A predictor-corrector method for the vorticity transport 
equation was used along with a fast Poisson solver for the streamfunction equation. Very good 
comparison with experimental data and other calculations has been found for the test case. The 
proven calculation procedure was then applied to the suddenly stopped and uniformly deceler- 
ated flow problems. A sharp increase in drag coefficient over that for the impulsive start was 
found when the initial condition wake vortices were symmetric for the suddenly stopped flow 
case. When the initial condition wake was asymmetric, the increase in drag coefficient was not so 
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Figure 14. Uniformly decelerating flow, Re = 77, a 'D3/vZ  = 105. (a) drag coefficient; (b) lift coefficient 

dramatic and an initial increase in lift coefficient was observed. These changes in lift and drag on 
the cylinder can be explained in terms of the induced velocities generated by the initial condition 
wake vortices. 
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